US009449401B2

az United States Patent (10) Patent No.: US 9,449,401 B2
Gough et al. 45) Date of Patent: *Sep. 20, 2016
(54) SYSTEM, METHOD AND ARTICLE OF HO4N 19/46 (2014.01)
MANUFACTURE FOR DECOMPRESSING HO04N 19/61 (2014.01)
DIGITAL CAMERA SENSOR DATA HO4N 19/60 (2014.01)
HO4N 19/12 (2014.01)
(71) Applicant: VSTREAM TECHNOLOGIES LLC, (Continued)
Dallas, TX (US) (52) U.S. CL
. CPCcoonueeeee GO6T 9/00 (2013.01); HO4N 19/12
(72) Inventors: Michael L. Gough, Ben Lomond, CA (2014.11); HO4N 19/156 (2014.11); HO4N
(US); Paul Miner, Santa Cruz, CA 19/176 (2014.11); HO4N 19/18 (2014.11);
(Us) HO4N 19/42 (2014.11); HO4N 19/44
(2014.11); HO4N 19/46 (2014.11); HO4N
(73) Assignee: VSTREAM TECHNOLOGIES LLC, 19/60 (2014.11); HO4N 19/61 (2014.11);
Dallas, TX (US) HO4N 19/91 (2014.11)
)) o) (58) Field of Classification Search
(*) Notice: Subject to any disclaimer, the term of this CPC ... GO6T 9/00; HO4N 19/12; HO4N 19/156;
patent is extended or adjusted under 35 HO4N 19/176; HO4N 19/18; HO4N 19/42;
U.S.C. 154(b) by 203 days. HO4N 19/436; HO4N 19/44; HO4N 19/46;
This patent is subject to a terminal dis-) H04N 19/60; HO4N 19/61; HQ4N 19/91
claimer. See application file for complete search history.
(56) References Cited
(21) Appl. No.: 13/663,076
U.S. PATENT DOCUMENTS
(22) Filed: Oct. 29, 2012
5,184,229 A 2/1993 Saito et al.
(65) Prior Publication Data 5,325,092 A 6/1994 Allen et al.
US 2014/0072236 Al Mar. 13, 2014 . . (Continued)
Related U.S. Application Data Primary Examiner — Phuoc Tran
(63) Continuation of application No. 12/337,599, filed on (74) Attorney, Agent, or Firm — Ascenda Law Group, PC
Dec. 17, 2008, now Pat. No. 8,300,988, whichisa (57) ABSTRACT
continuation of application No. 11/657,705, filed on A system, method, and article of manufacture for decom-
Jan. 23, 2007, now Pat. No. 7,489,824, which is a pressing a bit stream of compressed data representing a
continuation of application No. 11/018,861, filed on plurality of image blocks. A plurality of bits of compressed
Dec. 20, 2004, now Pat. No. 7,245,772, which is a input data relating to AC codes are retrieved from the bit
continuation of application No. 09/626,012, filed on stream and a first decoding operation executed to generate
Tul. 26. 2000. now Pat. No. 6.850.647 first output data. If sufficient space for the first output data
’ ’ o T exists, the first output data is outputted. Otherwise, a second
(60) Provisional application No. 60/146,522, filed on Jul. decoding operation generates second output data. The first
30, 1999. decoding operation includes performing a look-up in a
look-up table based on the input data. A pointer is retrieved
(51) Imt. CL from a data segment that corresponds to the input data and
GO6K 9/36 (2006.01) a routine corresponding to the retrieved pointer is executed.
GO6K 9/46 (2006.01) The payload of the data segment is processed in the executed
GO6T 9/00 (2006.01) routine to generate the first output data.
HO4N 19/176 (2014.01) 12 Claims, 20 Drawing Sheets
G-
----------------- »{;zaﬂrn%::]\mz =
f?ﬁ‘ (.ﬁm%ﬁj\w
LI (7 NP
IFTORBTRRE . g
s

[CETRECTMERORTON .15y

b
ed ooy
TG T FORREDOMENTED
e T :

{"VERGE ALTERNATE BOFFER
| WTHEGIAGBUFER

[RS QUANTRRTON .y

T BLECKAS ACONFLETED
| BOCK | INTOQUTRLY HUPE_ES_ 1228

G

US 9,449,401 B2
Page 2

(51) Imt.CL
HO4N 1991 (2014.01)
HO4N 19/156 (2014.01)
HO4N 19/18 (2014.01)
HO4N 19/44 (2014.01)
HO4N 19/42 (2014.01)
(56) References Cited

U.S. PATENT DOCUMENTS

5434913 A 7/1995 Tung et al.
5,479,166 A 12/1995 Read et al.
5,541,595 A 7/1996 Meyer

5,550,542
5,566,254
5,623,423
5,764,801
5,768,561
5,826,073
5,838,597
5,963,260
5,991,465
6,002,801
6,219,457 Bl

6,580,828 Bl

6,850,647 B1*
7,627,183 B2

bt g g S

* cited by examiner

8/1996
10/1996
4/1997
6/1998
6/1998
10/1998
11/1998
10/1999
11/1999
12/1999
4/2001
6/2003
2/2005
12/2009

Inoue

Murata et al.
Lipovski
Munemasa et al.
Wise

Ben-Mier et al.
Pau et al.
Bakhmutsky
Anderson et al.
Strongin et al.
Potu

Li

Gough et al.cc..... 382/233
Gough et al.

U.S. Patent Sep. 20, 2016 Sheet 1 of 20 US 9,449,401 B2

i

e Z

308 1M
I] DISPLAY
1 — > ~
))
J"x
"’l“f- . .
{ DIGITAL PROGESSING
N SYSTEM
SOMPRESSED 7
YIOED DATA 0

FIG.

FRIOR ART

U.S. Patent Sep. 20, 2016

g
ety
e~z

™
=

BLUE {2843)

Sheet 2 of 20

Gy (206h}

US 9,449,401 B2

W

MAGE N N

;“ u .

‘§~ .
o) O
“N:* !"_3 L--“\“

18 i

((p' 2
i i
i i @ Gy {8e)

:z\“\»w N
-R

p?s \ﬂ:v‘\‘{(!

i N
:
.

={

¥ 13960)

13
§
; £
£ 2 I
¥ i
N f N
{ 2;\:{,;} ¥ i‘. v
{205k}

FIG. 2

PRIOR ART

8

U.S. Patent

.~
e

P

=)

£
%
4

Sep. 20, 2016

Sheet 3 of 20

EREPRTNS 1N

B
S 3
1
2
2

‘1‘
; f;
s t
3 o SALY
- 2068
S S
.ﬁ."a
.
3
g
N e Aans
3
.
i
B

302

3

i‘w_..._:wsiw

¥
1

FREQUERCES

cennananataa

FIG. 3

PRIOR ARY

L

8
v

4
A

P
SN () —
/

/

Nannenar

16, 4

FRIOR ARY

308

L/

RUANTEED
CORFFICENTS

P

US 9,449,401 B2

iy

k\

SPATL

>

RSN RN
FRECUTRIES

U.S. Patent

Sep. 20, 2016

SERIAL

Sheet 4 of 20

AT
K 16 Zs’x@'

£
e O QOO

N

US 9,449,401 B2

3 I QO €

e O L

B

',.
t

s o
FIG,

PRIQR *\ix

04
.»\\Ae,...-Kv.,.‘\

AN AUA N AN S B e

S

o2

o

i

\-NJ\~\‘v'\;>§h>\\\Avn\ R

} OOl o0 L\N\N —d

GROUP OF JEROS

HUMBER

[OOU A

o mae w N R AR M AR A

A A N R MR N R W A A M W N G

A e

HUFFMAN GROUS

NI
PRIOR ART

\\\\\\\\\\\

s w0 0 7t 20 0
3 }
Y \\ N y
boen 3 AEREI AL { NG f SRS > - \ N
; COMRARD GOEFROIEN ; COMHAND GORFRCIRNY GO COSFRG
N v

G 7

PRIOR ART

U.S. Patent

Sep. 20, 2016

.w-\- oy

st SR e

OBTAN 1
IR

PERFORM A LODK UP
N A LOOK-UR TABLE

EMIT THE NUMBER
(F ZEROS SPECIFIED

CONSUME
{OMMVAND

OECODE CORFFICERT
OF SPRCFIED LENGIH

-
Liva

EMT
CU&?HG!M ?

'i?

CONSUME RAWERS

REFRESENTING CORFHICENT

o \ ﬁ
W \//‘

PRIOR ART

Sheet 5 of 20

MERMING <~

US 9,449,401 B2

80

Fopvies

FIG
§ <

ERVEVERRRRRRSIS

8A

PRIORART

U.S. Patent

Sep. 20, 2016

Sheet 6 of 20

@ﬂ\%)

US 9,449,401 B2

PROCESS OKE
O CORE

PROGESS FLURRLITY
OF AC CODES

st

5

\

FIG. 9

&) 2

NETWORK (835

5
¥4
/

Gy ROM

i
ADAPTER

COMMUNICATION
ADAPTER

74

R e

{@E\:é}}\\%s\&\ \@\\\\\’sﬁ
3 > SV,

{‘gx\\\‘%‘\(ﬁ\:xx«\:'\s\\\ﬁi’sﬁ

C |

W8
l}

§

QISPLAY

ADAFTER

¥ 7
/ /
IRV i

FG. BA

U.S. Patent

Sep. 20, 2016

Sheet 7 of 20

3
. ORTAN
103 TS

FERFOIRM
LOARUP

Pt L

]

S

2
%
o

¢

RO OUT ONE BIT
FFENDING AC DATA

X

¥ B

=

st {’

LOOKAURT " oaam
\\\\ s ¥

T

¥

Lo
G-

CONSUME RAW
BITS OF COMMAND

il

GETOC DATA
FROM BAW DATA

g

CONVERT DL DATA
TOSIGRED INTEGER

{815~ FROCESSING ON DC COBFFICIENT

PERFORM POST.

1013

EAIT B0 COBFHCIERTS
TOATERNATE BUFFER

AE)
g

CONBUME RAW BITS.
FOR DC CORFRCIENT

FiG. 10

US 9,449,401 B2

R

U.S. Patent Sep. 20, 2016 Sheet 8 of 20 US 9,449,401 B2

, 42 iﬁs . $60
1108 o

e i 7 4 i e 41

g
] 3
¥ H
H t
:
} '
5
: :
H !

FIG. 11

U.S. Patent Sep. 20, 2016 Sheet 9 of 20 US 9,449,401 B2

{3 "%‘AR" ‘«

T

i e
) OBTA N-BITS | o

109

1 e
% &
ik L PERFORMLOCKWP .y
B !

GETPONTER Iy

% ~
P PTQ.?QE TINE }\\%
[FROCESSROUTME I ungg
{{ TR

L CETRECOMMERDATION . g,

I 2 RO
U EMITOUTR NE-“*«:“ \Eni‘ﬁ?ﬁﬁf;{}hfaﬁ amjﬁm 14

‘ i T {)umgj e
| CONSUME UNDERSTOODBS | - ?‘“’
["} i ’5’2'}3 § !&lﬁ’gﬂk”‘i}‘n\, {){.«)GBER }\\\ ,izng

2 { \ 422
5
Bl e S
> ” ““ o
anas :“\ & A\
N 3 T
‘_\v".
R
Y89 .

| PERFORM IVERSE ZIGZAG_ M. gy
é LER
HERGE ALTERNATE BUFFER ¢
WITH 2IG-ZAG BUFFER e 4294

{
| NVERSE QUANTIATION I\ g0

| ;‘e@vst?E ey o

EMIT BLOCKAS ACOMPLETED |
BLOCK TR CRITPUT BUFFER 1228

FIG. 12 (&0)

U.S. Patent

Sep. 20, 2016 Sheet 10 of 20

.

= QBTAIN N-BITS

¢

US 9,449,401 B2

AN 1300

gy pel PERFORMAQOKAR e
I \\ *&j AN
[ZERG QUT ORE BT .
OF OFFERBNG DATY P .
OF NEXT BLOCK R
ik
3

X

.

EMT ZEROS Paogipy L EMIT ZEROS TOEND OF BLUCK |

t

CONSUME RAWBITS FORCOMMAND . (a0

|

GET COFFICIENT FROM RAW NP

P 142

>
¥
H

CONSUME RAW 8IT8 FOR COEFFICIENT }\.m 4

(SONVERT CORFFICIENT TO A SIGHED ITEGERI. 1544

X

T

ui s‘“"‘:‘\ I WaTatin \

N3 CORFFICIERT RN
e

S BUFFERT

e FITS WITHNGRMAL 14

\‘.\q{}
13

| | BT COEFFICIENT INTO NORUAL BUFFER.

PN
s !”s} N, won
ENDOF T IE

LY
i“‘i‘d _‘\.-“"‘

2

Cer -~
\\\%-QQKE‘_,@'*
\V«-‘“"

TYVEETRTRRNEN

1322

FIG. 13

(oote)

U.S. Patent Sep. 20, 2016 Sheet 11 of 20 US 9,449,401 B2

o
(smer)

;) J}“ igi‘:
o
| EXTRACT DT N
% ¢ d
! FORMAT DATAFOR am?m RECOMHENDATION Pt
o CUTPUT DA% Pt
¢

| A0D CONSTANT # OF QUTPUT COEFFICIERTS TOBLOGK POSITION . 4405
3 IV

. |
(REVURNTO.GECODER.)

FG. 14

U.S. Patent

Sep. 20, 2016

@)

RS

EXTRACY
XANDY

INSECT CONGTANT A
BETWEEN XAND Y

3

INRECT CONSTANT #
OF 2ER0S

A0 T0
BLOCK PO

JRER:

(oose)

FIG 16

Sheet 12 of 20

o
e

g

X
s .

L

US 9,449,401 B2

U.S. Patent

Sep. 20, 2016

Sheet 13 of 20

US 9,449,401 B2

1349
: &
FXTRAGT -
SONTER ~ 1560
LXK ,
SRYTE QUTFUY 1802
3
AT -
ERYTE DUIRGT 4504
ADEI
BLUCK POS 1500
{Q@é@&}
e]
G, 16
{603 *xﬂ
\3
'§ i E} H i

FiG, 16A

U.S. Patent

Sep. 20, 2016

SIRY 210
: &
LDAD RAWBITS -
{OF CORFFIGIENT NS
CONVERTRAWEITS |
TOASIGNED INTRGER ~ 1708
NGECT
;iERO-S! 1M
EMIT COBFFICIENTS 1O \
APPROPRIATE RUFFER {708
ADTO -
BLOCK PO3 TR
{ G: a;s“‘;\

Sheet 14 of 20

(swar) e

3

EXTRACT PORTER TO
AUXRIARY LOCKUP TARLE 1™ 1000

CRYAIN
RIS RSt

y

FERFORM
LOOKUPTARLE JUMp e

US 9,449,401 B2

U.S. Patent Sep. 20, 2016 Sheet 15 of 20 US 9,449,401 B2

OGO g
XD »\

908
3 TN 3 :v“vé
F F

SV Ny e
£ o &
000

ST |

00000 ‘;« YRS i}?ilw ot g o o SOHEM
0000004

" & o i

coocoocml

00GE00E0 4

FIG, 18

U.S. Patent Sep. 20, 2016 Sheet 16 of 20 US 9,449,401 B2

M ODODOM]
)l
@ G @ () G

/

U.S. Patent

<Xz

2

SPATL
FREQUENDY
CORFFIOIENTS

Sep. 20, 2016

Sheet 17 of 20

US 9,449,401 B2

1)
X X
L LY
A)
P \\ .‘\ §
G, 21
4 5 MW
. Vi
’,.-“" \\\ !
/‘f B
. W o ees
e DATA

MG, 24

U.S. Patent

X

cHs

s

et

<

Lz

L~

Sep. 20, 2016

Sheet 18 of 20 US 9,449,401 B2

ARate N

S
~
13
i
far)

B
']

o

o
e T

“x

ond

P,

7
Pl

g
%
povvY.

,

¢

Gu 507
7

{y

FIG. 23

U.S. Patent Sep. 20, 2016 Sheet 19 of 20 US 9,449,401 B2

2PN
STRT)

aragaananst’

EXTRACT NON-ZERD
CORFFICIENTS 2400

GEYANONZERD 4
COEFFICIERY R

PERFORM INVERSE .
GUANTIZATION pa it

FERFORM ANY BOY
PROCESAING THAT IS APPROPRIATE ™ 2408

HANDLE -
ZERDS ~ 3408
(oone)

FIG. 24

U.S. Patent

A e a we

Sep. 20, 2016 Sheet 20 of 20

B R RO R PP

SOFTWARE

[

PROCESSOR

\ 7

PIPE DATA 506

H
i

e v e e 2 i e e e S 0 A e i B
7

slvzER
SO U AU RO
Nt /

£
FiPE 2

™ g5
HARDWARE ‘
PROCESSOR

3

60 DEVCE
(DISFLAY}

EXTRACTING N-8ITS

FROMABITSIREAN | 2680

ANALYZING

THEREIS N 2
DIRECTING THE N-BITS
INTO UNE OF ATLEART

TWOPIPELINES OF A I %

HARDWARE PROCESSOR
BASED ON THE ANALYSIR

FlG, 26

US 9,449,401 B2

= DATAN

US 9,449,401 B2

1

SYSTEM, METHOD AND ARTICLE OF
MANUFACTURE FOR DECOMPRESSING
DIGITAL CAMERA SENSOR DATA

CROSS REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. Ser. No. 12/337,
599, filed Dec. 17, 2008, which is a continuation of U.S. Ser.
No. 11/657,705, filed Jan. 23, 2007, which is a continuation
of U.S. Ser. No. 11/018,861, filed Dec. 20, 2004, now U.S.
Pat. No. 7,245,772, which is a continuation of Ser. No.
09/626,012, filed Jul. 26, 2000, now U.S. Pat. No. 6,850,
647, which claims benefit of 60/146,522, filed on Jul. 30,
1999, all of which are herein incorporated by reference.

FIELD OF THE INVENTION

The present invention relates to digital processing of
compressed video data and more particularly to decompress-
ing a bit stream representative of a plurality of video frames
generated by a digital camera.

BACKGROUND OF THE INVENTION

As shown in Prior Art FIG. 1, a digital camera system 100
typically includes a digital camera 102 having a sensor 104
aligned with a lens 105, where the sensor 104 is capable of
generating video signals including a plurality of discrete
images. A display 106 can be coupled to the digital camera
102 by a digital processing system 108. One function of a
digital processing system 108 may be to decompress com-
pressed video images for the purpose of efficient storage and
communication.

Prior Art FIG. 2 shows an initial stage of compression of
the video signals received from the exemplary digital cam-
era 102. As shown, one of the images 200 is received from
the sensor 104 of the digital camera 102 and is subsequently
divided into a plurality of blocks 202, or portions, each
having dimensions of 16x16 pixels. Thereafter, each of the
blocks 202 are separated into three color components includ-
ing blue, green and red color components 204a-c, respec-
tively.

With continuing reference to Prior Art FIG. 2, the blue,
green and red color components 204a-c of each block 202
are transformed into chrominance (Cb, Cr) and illuminance
(Y) components 206a-c, respectively. This is accomplished
by a matrix algorithm as will be appreciated by those skilled
in the art. Next, the chrominance components 206a, 2065 are
compressed to the extent of the having dimensions of 8x8
pixels, i.e. half the dimensions of the illuminance compo-
nent 206c¢. The illuminance component 206¢ is exempted
from compression due to the sensitivity of the human eye to
such color component.

Prior Art FIG. 3 is a subsequent step of processing
wherein the illuminance component 206¢ is subdivided into
four components each having dimensions of 8x8 pixels.
Altogether, a total of six parts are existent at this point in the
processing for each component. The chrominance and illu-
minance components 206a-c¢ are then processed by a dis-
crete cosine transform (DCT) operation 300. The DCT
operation 300 translates the pixel data of the chrominance
and illuminance components 206a-c¢ into corresponding
spatial frequency data 302. This results in a 8x8 grid of
spatial frequency numbers. As is conventional, low fre-
quency data is positioned at an upper left hand portion of the
8x8 grid, high frequency data is positioned at a lower right

25

40

45

50

55

2

hand portion of the 8x8 grid, horizontal frequency data is
positioned at an upper right hand portion of the 8x8 grid, and
vertical frequency data is positioned at a lower left hand
portion of the 8x8 grid.

As shown in Prior Art FIG. 4, the spatial frequency data
302 is subsequently processed by a quantization operation
400, thus rendering scaled spatial frequency data 402, or
quantized coefficients. This quantization operation 400
scales each of the spatial frequency data 302 of the 8x8 grid
by a quantization factor in terms of importance when viewed
by the human eye. For example, low frequency data is scaled
differently than high frequency data since human vision is
more sensitive to low frequency light.

With reference now to Prior Art FIG. 5, the scaled spatial
frequency data 402 is then processed by a run length coding
scheme 502. As shown, the numbers of the scaled spatial
frequency data 402 are selected in a “zigzag” fashion,
serialized, and subsequently encoded. When encoded,
groups of zeros 504 are detected in the serialized scaled
spatial frequency data 402 and are subsequently com-
pressed. It should be noted that the high frequency data have
a greater tendency to be subjected to such zero compression.
This is because during the quantization operation, the high
frequency data are quantized more, thereby resulting in
lower numbers approaching zero.

Prior Art FIG. 6 shows a portion of the serialized bit
stream of Prior Art FIG. 5 after the encoding operation 502
is carried out. As shown, the groups of zeros 504 are
compressed and accompanied by a number 602 that is
representative of the number of zeros. Together, the groups
of zeros 504 and the number 602 form a “Huftman Group”
604. As will soon become apparent, the number 602 of the
Huffman Group 604 becomes a coefficient in the resultant bit
stream.

Such resultant bit stream is shown in Prior Art FIG. 7. As
shown, the coeflicients 700 are each accompanied by a
command 702. This command 702 represents the number of
preceding zeros in addition to the number of bits required to
encode the number that follows. The length of each com-
mand 702 may be optimized by generating short commands
702 to cover common combinations of data and generating
long commands 702 to cover unlikely combinations of data.
The command thus has a variable-length.

With the image information now compressed, it is thus
suitable for effective delivery to a desired location. Upon
delivery, the image information must be decompressed. One
decompression process of the prior art is shown in Prior Art
FIG. 8. Upon starting in operation 800, 11 bits of raw data
are obtained from the compressed bit stream in operation
802. Such 11 bits of raw data are then used to perform a
look-up in a look-up table 805 in operation 804. An example
of'such look-up table 805 is shown in FIG. 8a. As shown, the
look-up table includes a plurality of 2-byte data segments
807 each of which decodes different 11 bit segments of the
raw data. For example, a 2-byte data segment may identity
a command, a number of preceding zeros, and a coeflicient
following the command.

In operation 804, the 2-byte data segment that corre-
sponds to the 11 bits obtained in operation 802 are retrieved.
The information from the 2-byte data segment is then used
to emit the number of zeros determined. Note operation 806.
Next, the command may be consumed, or deleted, in opera-
tion 808. The coefficient specified by the 2-byte data seg-
ment is then decoded and emitted in operations 810 and 812,
respectively. Thereafter, the bits of raw data that represent
the coefficient are consumed in operation 814. Finally, it is
determined in decision 816 whether any more bits of raw

US 9,449,401 B2

3

data remain. If so, the process of Prior Art FIG. 8 is repeated.
If not, however, the process is terminated in operation 818.

It should be noted that the foregoing decompression
scheme of Prior Art FIG. 8 includes a two-step method of
processing both a DC code and a plurality of AC codes. As
is well known by those of ordinary skill in the art, the DC
code relates to an initial set of the bits representative of an
image block while the AC codes relate to a plurality of
subsequent set of the bits representing the image block.

The foregoing decoding process of Prior Art FIG. 8 thus
depends on a unique data segment stored in a look-up table
for every combination of bits of raw data obtained. This
procedure can be very time consuming and thus result in a
slow decoding time and lack of efficiency.

There is thus a need for decompressing a bit stream of
compressed data representing a plurality of image blocks in
a more expedited manner.

SUMMARY OF THE INVENTION

The present invention includes a system, method, and
article of manufacture for decompressing a bit stream of
compressed video data. In a preferred embodiment, the
present invention includes a two-step method of processing
both a DC code and a plurality of AC codes.

With respect to the processing of the DC code, a plurality
of bits of compressed input data relating to the DC code are
first obtained from the bit stream. Thereafter, a look-up is
performed in a look-up table based on the obtained com-
pressed input data. The look-up table includes a plurality of
data segments each having output data therein. If the look-up
is unsuccessful, at least one bit of the compressed input data
is zeroed out and another look-up is performed. Next, a DC
command component of the compressed input data is con-
sumed. DC data is then retrieved from the compressed input
data after which such DC data is converted to a signed
integer. A DC coefficient component of the compressed input
data is then processed and emitted to an alternate buffer.
Finally, the compressed input data corresponding to the DC
coeflicient component of the compressed input data is con-
sumed.

In terms of AC code processing, a plurality of bits of
compressed input data relating to the AC codes are first
retrieved from the bit stream. A first decoding operation is
then executed based on the obtained compressed input data
in order to generate first output data. It is then determined
whether sufficient space is available for the first output data.
If it is determined that there is sufficient space for the first
output data, the first output data is outputted. If, however, it
is determined that there is insufficient space for the first
output data, an alternate second decoding operation is
executed in order to generate second output data.

In order to carry out the foregoing decoding operations, a
data structure is provided in a look-up table for being
employed by an AC decoder during use. Such data structure
includes a plurality of data segments each having a payload
and a pointer. The payload includes a plurality of bits in one
of a plurality of coding schemes. Further, the pointer cor-
responds to a routine which is capable of processing the
coding scheme of the payload associated with the pointer.

The first decoding operation initially includes the opera-
tion of performing a look-up in the look-up table based on
the obtained compressed input data. The pointer is then
retrieved from one of the data segments that corresponds to
the obtained compressed input data. Next, the process rou-

10

15

20

25

30

35

40

45

50

55

60

65

4

tine corresponding to the retrieved pointer is executed. The
payload is then processed in the executed routine in order to
generate the first output data.

The foregoing routine that processes the payload of the
data segment in order to generate the first output data may
take many forms. For example, the acts of the process
routine may include: extracting data from the payload of the
data segment; formatting the extracted data; outputting the
formatted data; and adding a number of coeflicient compo-
nents to a block position.

Another example of the process routine includes the acts
of: extracting data from the payload of the data segment;
formatting the extracted data; outputting the formatted data;
and adding a number of coefficient components to a block
position.

Still another example of the process routine includes the
acts of: extracting data components of data from the payload
of the data segment; injecting a constant adjacent to the
components; injecting a number of zeros between the com-
ponents of the data from the payload; and adding the
components of the data from the payload, the constant, and
the zeros to a block position. In the various alternate
embodiments, the constant may be injected in front of,
between, or to the rear of the remaining components.

Still yet another example of the process routine includes
the acts of: extracting a pointer from the data segment;
looking up an n-byte output; emitting the n-byte output; and
adding the n-byte output to a block position.

Associated therewith is another example of the process
routine that includes the acts of: retrieving a coeflicient
component of the compressed input data; converting the
coeflicient component of the compressed input data into a
signed integer; injecting zeros; emitting the coefficient com-
ponent of the compressed input data; and adding the coef-
ficient component of the compressed input data to a block
position.

A final example of the process routine includes the acts of:
extracting an auxiliary pointer from the payload of the data
segment that corresponds to one of a plurality of auxiliary
data segments in an auxiliary look-up table; obtaining n bits;
performing a look-up table jump.

As mentioned earlier, if during AC decoding it is deter-
mined that there is insufficient space for the first output data,
an alternate second decoding operation is executed in order
to generate second output data. Such second decoding
operation includes multiple acts starting with performing a
look-up in a look-up table based on the obtained compressed
input data. The look-up table includes a plurality of data
segments each having the second output data therein. If the
look-up is unsuccessful, at least one bit of the compressed
input data is zeroed-out and another look-up is performed.
The second output data is then retrieved directly from one of
the data segments that corresponds to the obtained com-
pressed input data.

After either the first or second output data is outputted, the
method continues by performing an inverse zigzag operation
on the output data; merging an alternate buffer with a zigzag
buffer; performing an inverse quantization operation on the
output data; performing an inverse DCT operation on the
output data; and emitting the output data.

In another embodiment of the present invention, upon the
extraction of coefficient components of compressed input
data, zeros are not immediately injected as set forth in the
foregoing examples of process routines which generate the
first output data. Instead, the zeros are handled after inverse
quantization and DCT processing operations are performed.
To accomplish this, information relative to the zeros is

US 9,449,401 B2

5

embedded in the process routine so that zeros may be
inserted after the inverse quantization and DCT processing
operations. The present embodiment thus represents another
mode of operation which can be characterized as a serialized
DCT process.

In still another embodiment, an additional procedure is
performed upon obtaining each set of bits, or components of
the input bit stream, in order to effect more efficient pro-
cessing. In particular, such procedure entails effectively
inputting the components of the input bit stream into a
hardware processor in order to process the sets of bits in a
manner that best exploits the architecture of the hardware
processor. The method begins by extracting a plurality of
components from the input bit stream. Next, the components
of the input bit stream are analyzed. Based on such analysis,
the components of the input bit stream are directed into one
of a plurality of pipelines of the hardware processor for
processing purposes. In one aspect of the present invention,
the components of the input bit stream may be directed into
one of the pipelines based on which pipeline is more suitable
for processing the components, as indicated by the analysis.

These and other advantages of the present invention will
become apparent to those skilled in the art upon a reading of
the following descriptions of the invention and a study of the
several figures of the drawing.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects are better understood from the
following detailed description of one embodiment of the
invention with reference to the drawings, in which:

FIG. 1 is a schematic diagram including a prior art system
for retrieving and displaying video signals;

FIG. 2 is an illustration of a prior art method for parti-
tioning an image and converting the RGB components
thereof into Y, Cr, and Cb components;

FIG. 3 is an illustration of a prior art method for parti-
tioning the Y component of FIG. 2 and further converting the
various components of the image to the frequency domain
via a conventional discrete cosine transform (DCT) opera-
tion;

FIG. 4 is an illustration of a prior art method for convert-
ing the spatial frequencies of FIG. 3 into quantized coeffi-
cients via a conventional quantizer operation;

FIG. 5 is an illustration of a prior art method for perform-
ing a serialization zigzag operation on the quantized coef-
ficients of FIG. 4 and subsequently performing a run length
encoding operation;

FIG. 6 is an illustration of the resulting data after the steps
of FIGS. 2-5 have been performed;

FIG. 7 is an illustration of the resulting data after the steps
of FIGS. 2-5 have been performed;

FIG. 8 is an illustration of a prior art method of decoding
the data received in the form shown in FIG. 7,

FIG. 8a is an illustration of a prior art look-up table
employed during the decoding of data by the process shown
in FIG. 8;

FIG. 9 is a flowchart illustrating a procedure for decoding
the data received in the form shown in FIG. 7 in accordance
with one embodiment of the present invention;

FIG. 94 is a schematic depicting an exemplary hardware
embodiment of the present invention;

FIG. 10 is a more detailed flowchart showing the pro-
cessing of the DC code shown in FIG. 9 in accordance with
one embodiment of the present invention;

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 11 is an illustration of a look-up table employed
daring the decoding of data by the process shown in FIG. 9
in accordance with one embodiment of the present inven-
tion;

FIG. 12 is a more detailed flowchart showing the pro-
cessing of the AC codes shown in FIG. 9 in accordance with
one embodiment of the present invention;

FIG. 13 is a more detailed flowchart showing the steps
associated with the alternate decoder operation shown in
FIG. 12 in accordance with one embodiment of the present
invention;

FIG. 14 is a more detailed flowchart showing the steps
associated with the process routine operation shown in FIG.
12 in accordance with one of many embodiments of the
process routine of the present invention;

FIG. 15 is a more detailed flowchart showing the steps
associated with the process routine operation shown in FIG.
12 in accordance with one of many embodiments of the
process routine of the present invention;

FIG. 15a is an illustration showing the injection of zeros
and a constant between the X and Y components during the
process routine shown in FIG. 15;

FIG. 16 is a more detailed flowchart showing the steps
associated with the process routine operation shown in FIG.
12 in accordance with one of many embodiments of the
process routine of the present invention;

FIG. 164 is an additional table of the present invention;

FIG. 17 is a more detailed flowchart showing the steps
associated with the process routine operation shown in FIG.
12 in accordance with one of many embodiments of the
process routine of the present invention;

FIG. 18 is a more detailed flowchart showing the steps
associated with the process routine operation shown in FIG.
12 in accordance with one of many embodiments of the
process routine of the present invention;

FIG. 19 is a more detailed flowchart showing the steps
associated with the process routine operation shown in FIG.
12 in accordance with one of many embodiments of the
process routine of the present invention;

FIG. 20 is a more detailed flowchart showing the steps
associated with the process routine operation shown in FIG.
12 in accordance with one of many embodiments of the
process routine of the present invention;

FIG. 21 is an illustration depicting an inverse quantization
operation, in accordance with one embodiment of the pres-
ent invention;

FIG. 22 is an illustration depicting an inverse DCT
operation in accordance with one embodiment of the present
invention;

FIG. 23 is an illustration depicting a macro-block assem-
bly operation, in accordance with one embodiment of the
present invention;

FIG. 24 is an illustration depicting an alternate mode of
operation, in accordance with one embodiment of the pres-
ent invention;

FIG. 25 illustrates a hardware processor of the present
invention; and

FIG. 26 is a schematic showing a hardware/software
configuration for implementing a parallel processing tech-
nique in accordance with one embodiment of the present
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

FIGS. 1-7 illustrate a coding scheme of the prior art.
FIGS. 8 and 8a illustrate a decoding process of the prior art.

US 9,449,401 B2

7

With reference now to FIGS. 9-24, it shown that the present
invention includes a system, method, and article of manu-
facture for decompressing a bit stream of compressed data
representing a plurality of image blocks, or portions.

As shown in FIG. 9, this includes a two-step method of
processing both a DC code in operation 900 and a plurality
of AC codes in operation 902. As is well known by those of
ordinary skill in the art, the DC code relates to a single initial
set of the bits representative of an image block while the AC
codes relate to a plurality of subsequent sets of the bits
representing the image block. This method is preferably a
computer implemented process executed by a computer
system as shown in FIG. 9a.

FIG. 9a illustrates an exemplary hardware configuration
in accordance with one embodiment having a central pro-
cessing unit 910, such as a microprocessor, and a number of
other units interconnected via a system bus 912. The hard-
ware configuration shown in FIG. 9a includes Random
Access Memory (RAM) 914, Read Only Memory (ROM)
916, an I/O adapter 918 for connecting peripheral devices
such as disk storage units 920 to the bus 912, a user interface
adapter 922 for connecting a keyboard 924, a mouse 926, a
speaker 928, a microphone 932, and/or other user interface
devices such as a touch screen (not shown) to the bus 912,
communication adapter 934 for connecting the hardware
configuration to a communication network 935 (e.g., a data
processing network) and a display adapter 936 for connect-
ing the bus 912 to a display device 938.

The hardware configuration typically has resident thereon
an operating system such as the Microsoft Windows NT or
Windows/98/2000 Operating System (OS), the IBM 0S/2
operating system, the MAC OS, or UNIX operating system.
Those skilled in the art will appreciate that the present
invention may also be implemented on platforms and oper-
ating systems other than those mentioned.

FIG. 10 shows in greater detail the method of processing
the DC code of operation 900 of FIG. 9. First, a predeter-
mined number of bits of compressed input data relating to
the DC code are first obtained from the bit stream in
operation 1002. Thereafter, in operation 1004, a look-up is
performed in a look-up table based on the obtained com-
pressed input data. It should be noted that the present
look-up table may be similar to the look-up table in opera-
tion 804 of Prior Art FIG. 8. In other words, the look-up
table includes a plurality of data segments each having
output data therein.

If the look-up of operation 1004 is determined to be
unsuccessful in decision 1006, at least one bit of the com-
pressed input data is zeroed out after which another look-up
is performed in operation 1008. An unsuccessful look-up
often occurs as a result of a portion of the AC codes being
inadvertently obtained. Next, a command component of the
compressed input data is consumed, or deleted, in operation
1010. DC data is then retrieved from the compressed input
data in operation 1012 after which such DC data is converted
to a signed integer in operation 1014. Then, in operation
1016, a DC coefficient component of the compressed input
data is processed after which it is emitted to an alternate
buffer in order to accommodate a large size thereof. Note
operation 1018. Finally, the compressed input data corre-
sponding to the DC coefficient component of the com-
pressed input data is consumed. Note operation 1020.

During DC code processing, the look-up may be per-
formed on a prior art look-up table similar to that discussed
earlier. In order to carry out AC code processing, however,
a specific data structure is employed during use. An example
of such data structure 1100 is shown in FIG. 11. The data

25

30

35

40

45

55

8

structure includes a plurality of data segments 1102 each
having a payload 1104 and a pointer 1106 which, together,
amount to 32 bits. The payload 1104 includes 16 bits in one
of'a plurality of coding schemes. In one embodiment, at least
14 types of code schemes are available. Further, the pointer
1106 includes 10 bits that correspond to a routine stored in
memory which is capable of processing the coding scheme
of the payload 1104 associated with the pointer 1106. In
addition, the data segments 1102 may each further include 4
bits representing a number, i.e. 1-16, of the obtained bits of
compressed input data that is understood. Finally, 2 bits are
left unused.

With reference now to FIG. 12, the process associated
with decompressing the AC codes is shown to begin in
operation 1200. First, a plurality of bits of compressed input
data relating to the AC codes are first retrieved from the bit
stream in operation 1202. It should be noted that any number
of bits may be retrieved that is capable of being handled by
the foregoing data structure. A first decoding operation 1203
is then executed based on the obtained compressed input
data in order to generate first output data.

The first decoding operation 1203 first includes perform-
ing a look-up in the look-up table based on the obtained
compressed input data in operation 1202. Note operation
1204. Such look-up may performed in a look-up table
“jump” which in turn accesses the look-up table of FIG. 11,
or may be performed directly to the look-up table. In
operation 1206, the pointer is then retrieved from one of the
data segments that corresponds to the obtained compressed
input data after which a jump is executed in operation 1208.
Next, the process routine corresponding to the retrieved
pointer is executed in operation 1210. The payload is then
processed in the executed routine in order to generate the
first output data, as indicated in operation 1212. The manner
in which the process routine processes the payload will be
set forth hereinafter in greater detail.

With continuing reference to FIG. 12, it is shown that a
recommendation is received as a result of calling the process
routine that processes the payload. Such recommendation
comprises the first output data which may take the form of
a fully decoded output and a number of coefficients or any
other desired form. It is then determined in decision 1214
whether sufficient space is available for the number of
coeflicients of the first output data. In other words, it is
determined whether there is room for the image block
corresponding to the raw data. This determination is
executed by locating an end of the image block.

If it is determined that there is sufficient space for the
coeflicients of the first output data in decision 1214, the
recommendation is accepted and the first output data is
outputted in operation 1216. Thereafter, the understood bits
of the raw data are consumed, or deleted, in operation 1218.
After the first output data is outputted, it is determined in
decision 1223 whether the decoding operation is currently
retrieving compressed input data that are representative of
an end of an image block. If not, the first decoding operation
1203 is repeated, as shown in FIG. 12.

If it is determined that there is insufficient space for the
first output data in decision 1214, an alternate second
decoding operation 1220 is executed in order to generate
second output data. More detail will be provided relating to
the alternate second decoding operation 1220 in reference to
FIG. 13.

Once it is determined in decision 1223 that the decoding
operation is at the end of an image block or the alternate
second decoding operation 1220 has been executed, an
inverse zigzag operation is performed on the output data in

US 9,449,401 B2

9

operation 1222. Next, an alternate buffer is merged with a
zigzag buffer in operation 1224. Thereafter, in operation
1225, an inverse quantization operation is performed on the
output data. Further, an inverse DCT operation is performed
on the output data in operation 1226 after which the output
data is emitted in operation 1228, thereby concluding the
decompression. Additional detail regarding the foregoing
operations will be set forth hereinafter in greater detail.

As mentioned earlier, if during AC decoding it is deter-
mined that there is insufficient space for the first output data,
an alternate second decoding operation 1220 is executed in
order to generate second output data. FIG. 13 is a more
detailed illustration of the method associated with the alter-
nate decoder operation 1220 of FIG. 12.

As shown in FIG. 13, the alternate second decoding
operation 1220 includes multiple steps starting with obtain-
ing n bits from the input data in operation 1300. The exact
number of bits may vary depending on a particular Huffman
decoding scheme being used. For example, 14 bits are
obtained in operation in one embodiment of the present
invention. Thereafter, a look-up is performed in a look-up
table based on the obtained compressed input data. Note
operation 1302. It should be noted that the look-up table
includes a plurality of data segments each having the second
output data therein.

It the look-up is determined to be unsuccesstul in decision
1304, at least one bit of the compressed input data is
zeroed-out, or deleted, in operation 1305 and another look-
up is performed. In the present description, a bad look-up is
defined as the situation wherein the input data has no
corresponding output data in the look-up table, the input data
corresponds with a meaningless data segment in the look-up
table, or any other situation where undesired results occur.
To this end, corrupt or useless data is erased in the search for
meaningful, useful data which has a corresponding data
segment in the look-up table. Once a successful look-up
occurs in decision 1304 the second output data is then
retrieved directly from one of the data segments in the
look-up table that corresponds to the currently possessed
input data. It is then determined in decision 1306 whether a
current position of the input data corresponds with an end of
a block of an image.

Upon it being determined that the compressed input data
is at the end of a block in decision 1306, the method further
includes emitting zeros to the end of the block in operation
1313. If however, it is determined that the compressed input
data is not at the end of a block in decision 1306, the method
further includes multiple operations that are executed given
information from the second output data.

As shown in FIG. 13, such steps include operation 1308
wherein the zeros are emitted as specified by the second
output data. A command component of the compressed input
data is then consumed in operation 1310 after which a
coeflicient component of the compressed input data is
retrieved in operation 1312. Next, the coefficient component
of the compressed input data is consumed. Note operation
1314. The coefficient component of the compressed input
data is then converted to a signed integer. Note operation
1316.

If the coefficient component is of an appropriate size to fit
in the normal buffer as determined in decision 1318, the
coeflicient component of the compressed input data is emit-
ted is operation 1320. It is then determined again in decision
1322 whether a current position is at an end of a block of an
image. If not, the present invention obtains another n bits in
operation 1300 and the method is repeated.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIGS. 14-18 illustrate more detailed flowcharts showing
various permutations associated with the process routine of
operation 1210 shown in FIG. 12. Such routine processes the
payload of the data segment of FIG. 11 in accordance with
various methods in order to generate the first output data.
Examples of such various methods will now be set forth.

FIG. 14 illustrates a fundamental example of the process
routine 1210 shown in FIG. 12. As shown, such routine may
include: extracting data from the payload of the data seg-
ment in operation 1400: formatting the extracted data in
operation 1402; outputting the formatted data in operation
1404; and adding a number of coefficient components to a
block position in operation 1406.

FIG. 15 illustrates another example of the process routine
of operation 1210 shown in FIG. 12. Such process routine
first includes the act of extracting two components of data
from the payload of the data segment in operation 1500. In
particular, the process routine of FIG. 15 extracts two fully
decoded 8-bit constants X,Y embedded in the payload of the
data segment. Such constants are eventually intended to take
the form of output coefficients. Next, a constant A is injected
adjacent to the components in operation 1502. Note FIG.
15a. The constant A is smaller than the constants X,Y and
initially resides in the pointer of the data structure of FIG.
11. As such, the constant A is inherent in the pointer which
in turn resides in the bit stream. Further, the constant A takes
little space prior to decoding. It should be noted that for
every possible combination of constant A and the remaining
constants X,Y, there is a separate corresponding data seg-
ment in the look-up table.

With reference now to operation 1504 of FIG. 15, a
number of zeros are injected between the constants X,Y of
the data from the payload. Similar to the constant A, the
zeros are part of the identity of the process routine. Next, in
operation 1506, the components of the data from the pay-
load, the pointer, and the zeros are added to a block position.
In the various alternate embodiments, the constant A may be
injected in front or to the rear of the remaining components.
In still other embodiments, the constants A and/or Y may be
excluded.

FIG. 16 illustrates yet another embodiment of the process
routine 1210 of FIG. 12, wherein a pointer is first extracted
from the data segment in operation 1600. It should be noted
that the present pointer is not that which accesses the data
segment, but rather an additional pointer situated in the
payload. Such additional pointer is then used to access a data
segment in an additional table 1601 like that shown in FIG.
16a. The additional table 1601 of FIG. 16a is 8-bytes wide
with eight entries 1603. Use of the additional table is limited
to numbers which are capable of fitting within one of the
eight entries. In alternate embodiments, the table may be
configured in any size of n-bytes.

With continuing reference to FIG. 16, an 8-byte output is
looked up in the additional table and thereafter emitted to the
regular buffer in operation 1602 and 1604, respectively.
Thereafter, the 8-byte output is added to a block position in
operation 1606.

Still yet another example of the process routine of opera-
tion 1210 of FIG. 12 is shown in FIG. 17. The current
example does not employ the payload of the corresponding
data segments of the data structure of FIG. 11. Further, the
present process routine may be especially useful when a
number of bits representative of a command is large enough
to preclude the retrieval of the bits associated with the
coeflicient.

When executed, the process routine of FIG. 17 first
includes the act of retrieving a coefficient component of the

US 9,449,401 B2

11

compressed input data in the form of raw bits. Note opera-
tion 1700. It should be noted that a number of raw bits to be
retrieved is inherent in the process routine. Next, the coef-
ficient component of the compressed input data is converted
to into a signed integer in operation 1702. Zeros are then
injected in operation 1704. In one embodiment, this may be
accomplished by simply advancing an output pointer in a
field of existing zeros inherent in the process routine. The
coeflicient component of the compressed input data is then
emitted in operation 1706. The coefficient component of the
compressed input data is added to the main buffer unless too
large in which case the coefficient component is emitted to
the alternate buffer. Next, in operation 1708, the coefficient
component of the compressed input data is added to a block
position.

FIG. 18 illustrates still another embodiment of the process
routine of operation 1210 of FIG. 12. Namely, such process
routine accommodates the situation in which an amount of
bits obtained is insufficient in containing all of the necessary
Huffman Coding commands. This is accomplished by a
second look-up which is performed with remaining bits to be
processed. The instant process routine initially includes
extracting an auxiliary pointer from the payload of the data
segment that corresponds to one of a plurality of auxiliary
data segments in an auxiliary look-up table. Note operation
1800. Next, bits are obtained from the compressed input data
in operation 1802. It should be noted that in the present
embodiment, look-ups may be continuously executed until
desired data is obtained. See operation 1804.

As shown earlier in FIG. 12, multiple final steps are taken
in order to complete decompression of the data. The inverse
zigzag operation 1222 of FIG. 12 is shown in greater detail
in FIG. 19. Such operation is necessary in order to reverse
the order of the data, thereby negating the effects of the
zigzag operation during compression in order to prepare for
an inverse DCT operation. To accomplish the inverse zigzag
operation, a reverse order operation 1900, a first transpose
operation 1902, a rotation 1904, and a second transpose
operation 1906 is carried out in a manner well known to
those skilled in the art. In the alternative, the inverse zigzag
operation may be modified for various microprocessors that
may be currently used.

While the inverse zigzag operation and the remaining
decompression operations perform better with data of a
smaller magnitude, i.e. 8/bits per sample, the data may be
expanded to 16/bits per sample in order to accommodate
larger requirements of certain blocks of the image. To
accommodate such situation, an alternate buffer 2000 is
merged with a zigzag buffer 2002, as shown in FIG. 20. By
this structure, blocks of the image requiring 16/bits per
sample may be accommodated and an output of 8/bits per
sample may be obtained. As such, the remaining decom-
pression operations may expediently process the data at
8/bits per sample while still accommodating periodic
requirements for larger data samples of up to 16/bits per
sample. It should be noted that each of the coefficients that
reside in the alternate buffer include a tag or identifier 2004
to indicate a proper location or order in the inverse zigzag
operation.

FIG. 21 is an illustration of operation 1225 of FIG. 12
which includes the inverse quantization operation. The spe-
cific order of such inverse quantization operation is critical
since such operation performs optimally on data samples of
smaller sizes like those outputted by the auxiliary buffer
2000. As shown in FIG. 21, the quantized coefficients 2100

20

30

40

45

55

12

from the auxiliary buffer 2000 are multiplied by inverse
quantization coefficients 2102 thus rendering spatial fre-
quency coefficients 2104.

FIG. 22 shows in greater detail the two-dimensional (2-D)
inverse DCT operation 1226 of FIG. 12. As is well known
to those of ordinary skill, the 2-D DCT operation processes
the spatial frequency coeflicients 2104 in order to generate
image data 2200. Such image data 2200 takes the form of a
plurality of 8x8 data samples which each comprise a portion
of a color component of an image block.

FIG. 23 illustrates the block assembly operation 1228 of
FIG. 12, wherein the portions of the color components 2300
of the image block are combined into 16x16 data samples
2302 which represent a complete color component of the
corresponding image block. Next, a matrix multiplication
operation 2304 is executed which combines the color com-
ponents in order to render the complete image block 2306
that is representative of RGB values. The data samples are
thus ready for conventional final processing for display,
storage, transmission, or the like.

FIG. 24 illustrates another embodiment of the present
invention the beginning of which is similar to that disclosed
in FIG. 15. A major difference resides in the fact that upon
the extraction of coefficient components of compressed
input data, zeros are not immediately injected as set forth in
the foregoing examples of process routines which generate
the first output data. Instead, the zeros are handled after
inverse quantization and DCT processing operations are
performed. To accomplish this, information relative to the
zeros is embedded in the process routine so that zeros may
be inserted after the inverse quantization and DCT process-
ing operations. The present embodiment thus represents
another mode of operation which can be characterized as a
serialized DCT process.

In particular, the embodiment of FIG. 24 begins in opera-
tion 2400 by extracting a plurality of non-zero coefficients
upon which a non-zero coefficient is retrieved in operation
2402. Next, in operation 2404, inverse quantization is per-
formed similar to that disclosed in reference to FIG. 21.
Thereafter, an inverse DCT process is executed in a manner
similar to that set forth hereinabove in FIG. 22. It should be
noted that the inverse DCT process is carried out only on
coeflicients eligible. See operation 2406. Finally, the zeros
are handled in operation 2408.

In still another embodiment, the present invention
employs an additional procedure upon obtaining each set of
n bits in order to effect more efficient processing. In par-
ticular, such procedure entails effectively inputting then bits
into a hardware processor in order to process the sets of n
bits in a manner that best exploits the particular architecture
of the hardware processor.

FIG. 25 shows a hardware processor 2500, or central
processing unit, which receives data by way of a software-
governed method. It should be understood that such method
mar also be executed by hardware, or even a portion of the
hardware processor 2500. In order to receive such data for
processing, the hardware processor 2500 includes at least
two “pipelines” 2502 and 2504 which include inputs to
separate components of the hardware processor. Such archi-
tecture is commonly known to those skilled in the art. For
example, such hardware processor may take the form of an
INTEL PENTIUM processor. Each of the components of the
hardware processor are adapted to process the inputted data
independently and even in different manners.

With continuing reference to FIG. 25, the software may
include multiple components one of which includes a pro-
cessor module 2506. At least one of the functions of the

US 9,449,401 B2

13

processor module 2506 is to obtain sets of n bits and
optionally process them using the various methods set forth
hereinabove. In addition to the processor module 2506, a
pipe data analyzer 2508 may be employed to feed each set
of bits to the pipelines 2502 and 2504 of the hardware
processor 2500.

Which of the two or more pipelines to which the pipe data
analyzer 2508 sends each set of bits may depend on various
factors. For example, each set of bits may be directed to the
pipelines 2502 and 2504 of the hardware processor 2500
based on which pipeline affords most efficient use of the
hardware processor 2500. In the alternative, the pipe data
analyzer 2508 may direct each set of bits based on which of
the pipelines 2502 and 2504 of the hardware processor 2500
is best suited to handle the associated processing.

FIG. 26 illustrates a method associated with the hardware
of FIG. 25. As shown, the method begins in operation 2600
by the processor module 2506 extracting sets of bits, or
components, from an input bit stream. Next, in operation
2602, the components of the input bit stream are analyzed by
the pipe data analyzer 2508. Based on such analysis, the
components of the input bit stream are directed into one of
the pipelines for processing purposes. In one embodiment,
the components of the input bit stream may be directed into
one of the pipelines based on which pipeline is more suitable
for processing the components, as indicated by the analysis.
In any embodiment, an increase in efficiency is achieved
during processing.

While this invention has been described in terms of
several preferred embodiments, it is contemplated that alter-
natives, modifications, permutations, and equivalents
thereof will become apparent to those skilled in the art upon
a reading of the specification and study of the drawings. It
is therefore intended that the true spirit and scope of the
present include all such alternatives, modifications, permu-
tations, and equivalents.

What is claimed is:
1. A method for decompressing a bit stream of com-
pressed data representing a plurality of image portions,
comprising:
obtaining a plurality of bits of compressed input data from
a bit stream;

executing a first decoding operation based on the obtained
compressed input data in order to generate first output
data;

determining whether sufficient space is available for the

first output data;
emitting the first output data if it is determined that there
is sufficient space for the first output data; and

executing a second decoding operation in order to gen-
erate second output data if it is determined that there is
insufficient space for the first output data.
2. The method as set forth in claim 1, wherein the first
decoding operation includes:
performing a look-up in a look-up table based on the
obtained compressed input data, wherein the look-up
table includes a plurality of data segments each having
a payload including a plurality of bits in one of a
plurality of coding schemes and a pointer;

corresponding to a routine which is capable of processing
the coding scheme of the payload associated with the
pointer;

retrieving the pointer from one of the data segments that

corresponds to the obtained compressed input data;
executing the routine corresponding to the retrieved
pointer; and

10

15

20

25

30

35

40

45

50

60

14

processing the payload in the executed routine in order to
generate the first output data.

3. The method as set forth in claim 2, wherein the

execution of the routine includes:

extracting data from the payload of the data segment;

formatting the extracted data;

outputting the formatted data; and

adding a number of coeflicient components to a block
position.

4. A computer program embodied on a non-transitory
computer readable medium for decompressing a bit stream
of compressed data representing a plurality of image por-
tions, the computer program comprising:

a code segment for obtaining a plurality of bits of com-

pressed input data from a bit stream;

a code segment for executing a first decoding operation
based on the obtained compressed input data in order to
generate first output data;

a code segment for determining whether sufficient space
is available for the first output data;

a code segment for emitting the first output data if it is
determined that there is sufficient space for the first
output data; and

a code segment for executing a second decoding operation
in order to generate second output data if it is deter-
mined that there is insufficient space for the first output
data.

5. The computer program as set forth in claim 4, wherein

the first decoding operation is carried out by:

a code segment for performing a look-up in a look-up
table based on the obtained compressed input data,
wherein the look-up table includes a plurality of data
segments each having a payload including a plurality of
bits in one of a plurality of coding schemes and a
pointer corresponding to a routine which is capable of
processing the coding scheme of the payload associated
with the pointer;

a code segment for retrieving the pointer from one of the
data segments that corresponds to the obtained com-
pressed input data; a code segment for executing the
routine corresponding to the retrieved pointer; and

a code segment for processing the payload in the executed
routine in order to generate the first output data.

6. The computer program as set forth in claim 5, wherein

the routine is carried out by:

a code segment for extracting data from the payload of the
data segment;

a code segment for formatting the extracted data;

a code segment for outputting the formatted data; and

a code segment for adding a number of coeflicient com-
ponents to a block position.

7. A method for decompressing a bit stream of com-
pressed data representing a plurality of image portions,
comprising:

obtaining a plurality of bits of compressed input data from
a bit stream;

performing a look-up in a look-up table based on the
obtained compressed input data, wherein the look-up
table includes a plurality of data segments each having
a payload including a plurality of bits in one of a
plurality of coding schemes and a pointer correspond-
ing to a routine which is capable of processing the
coding scheme of the payload associated with the
pointer;

retrieving the pointer from one of the data segments that
corresponds to the obtained compressed input data;

US 9,449,401 B2

15

executing the routine corresponding to the retrieved
pointer; and processing the payload in the executed
routine in order to generate output data.

8. The method as set forth in claim 7, wherein the

execution of the routine includes:

extracting data from the payload of the data segment;

formatting the extracted data; outputting the formatted
data; and

adding a number of coefficient components to a block
position.

9. The method as set forth in claim 7, wherein the

execution of the routine includes:

retrieving a coeflicient component of the compressed
input data;

converting the coefficient component of the compressed
input data into a signed integer;

injecting zeros;

emitting the coefficient component of the compressed
input data; and

adding the coefficient component of the compressed input
data to a block position.

10. A computer program embodied on a non-transitory
computer readable medium for decompressing a bit stream
of compressed data representing a plurality of image por-
tions, the computer program comprising:

a code segment for obtaining a plurality of bits of com-

pressed input data from a bit stream;

a code segment for performing a look-up in a look-up
table based on the obtained compressed input data,
wherein the look-up table includes a plurality of data
segments each having a payload including a plurality of

10

25

30

16

bits in one of a plurality of coding schemes and a
pointer corresponding to a routine which is capable of
processing the coding scheme of the payload associated
with the pointer;

a code segment for retrieving the pointer from one of the
data segments that corresponds to the obtained com-
pressed input data;

a code segment for executing the routine corresponding to
the retrieved pointer; and

a code segment for processing the payload in the executed
routine in order to generate the output data.

11. The computer program as set forth in claim 10,

wherein the routine is carried out by:

a code segment for extracting data from the payload of the
data segment;

a code segment for formatting the extracted data;

a code segment for outputting the formatted data; and

a code segment for adding a number of coeflicient com-
ponents to a block position.

12. The computer program as set forth in claim 10,

wherein the routine is carried out by:

a code segment for retrieving a coeflicient component of
the compressed input data;

a code segment for converting the coefficient component
of the compressed input data into a signed integer;

a code segment for injecting zeros;

a code segment for emitting the coefficient component of
the compressed input data; and

a code segment for adding the coefficient component of
the compressed input data to a block position.

#* #* #* #* #*

